Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation
نویسندگان
چکیده
The present paper combines an effective beam theorywith a simple and accurate numerical technique opening the door to the prediction of the structural behavior of planar beams characterized by a continuous variation of the cross-section geometry, that in general deeply influences the stress distribution and, therefore, leads to non-trivial constitutive relations. Accounting for these peculiar aspects, the beam theory is described by a mixed formulation of the problem represented by six linear Ordinary Differential Equations (ODEs) with non-constant coefficients depending on both the cross-section displacements and the internal forces. Due to theODEs’ complexity, the solution can be typically computed only numerically also for relatively simple geometries, loads, and boundary conditions; however, the use of classical numerical tools for this problem, like a (six-field) mixed finite element approach, might entail several issues (e.g., shear locking, ill-conditioned matrices, etc.). Conversely, the recently proposed isogeometric collocation method, consisting of the direct discretization of the ODEs in strong form and using the higher-continuity properties typical of spline shape functions, allows an equal order approximation of all unknown fields, without affecting the stability of the solution. This makes such an approach simple, robust, efficient, andparticularly suitable for solving the systemofODEs governing the nonprismatic beam problem. Several numerical experiments confirm that the proposedmixed isogeometric collocationmethod is actually cost-effective and able to attain high accuracy. © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
An Approximate Solution of Functionally Graded Timoshenko Beam Using B-Spline Collocation Method
Collocation methods are popular in providing numerical approximations to complicated governing equations owing to their simplicity in implementation. However, point collocation methods have limitations regarding accuracy and have been modified upon with the application of B-spline approximations. The present study reports the stress and deformation behavior of shear deformable functionally grad...
متن کاملVibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method
Abstract: In the present article, a semi-analytical technique to investigate free bending vibration behavior of axially functionally graded non-prismatic Timoshenko beam subjected to a point force at both ends is developed based on the power series expansions. The beam is assumed to be made of linear elastic and isotropic material with constant Poisson ratio. Material properties including the ...
متن کاملIsogeometric analysis and shape optimization via boundary integral
In this paper, we present a boundary integral based approach to isogeometric analysis and shape optimization. For analysis, it uses the same basis, Non-Uniform Rational B-Spline (NURBS) basis, for both representing object boundary and for approximating physical fields in analysis via a Boundary-Integral-Equation Method (BIEM). We propose the use of boundary points corresponding to Greville absc...
متن کاملApplication of Differential Transform in Free Vibration Analysis of Timoshenko Beams Resting on Two-parameter Elastic Foundation
Non-prismatic beams have received great attention from engineers due to their capability in optimizing the strength and weight of the structure. In recent years, many researchers have worked on engineering problems related to static and dynamic analysis of either Euler–Bernoulli [1–3] or Timoshenko [4,5] beams. For short thick beams and rotating machineries, the Timoshenko beam theory presents ...
متن کاملIsogeometric collocation methods with generalized B-splines
We introduce isogeometric collocation methods based on generalized B-splines and we analyze their performance through numerical examples for univariate and multivariate scalarand vector-valued problems. In particular, advection–diffusion and linear elasticity model problems are addressed. The resultingmethod combines the favorable properties of isogeometric collocation and the geometrical and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 74 شماره
صفحات -
تاریخ انتشار 2017